1use std::hash::{BuildHasher, BuildHasherDefault, Hash, RandomState};
72use std::ops::Range;
73
74use derivative::Derivative;
75use derive_more::From;
76use ref_cast::RefCast;
77use ustr::{IdentityHasher, Ustr};
78
79use super::category::*;
80use super::graph::ProedgeGraph;
81use super::tree::{DblNode, DblTree};
82use crate::one::{Graph, path::Path};
83use crate::one::{category::*, fin_category::UstrFinCategory};
84use crate::validate::Validate;
85use crate::zero::*;
86
87pub trait DblTheory {
96 type ObType: Eq + Clone;
102
103 type MorType: Eq + Clone;
109
110 type ObOp: Eq + Clone;
116
117 type MorOp: Eq + Clone;
123
124 fn has_ob_type(&self, x: &Self::ObType) -> bool;
126
127 fn has_mor_type(&self, m: &Self::MorType) -> bool;
129
130 fn has_ob_op(&self, f: &Self::ObOp) -> bool;
132
133 fn has_mor_op(&self, α: &Self::MorOp) -> bool;
135
136 fn src_type(&self, m: &Self::MorType) -> Self::ObType;
138
139 fn tgt_type(&self, m: &Self::MorType) -> Self::ObType;
141
142 fn ob_op_dom(&self, f: &Self::ObOp) -> Self::ObType;
144
145 fn ob_op_cod(&self, f: &Self::ObOp) -> Self::ObType;
147
148 fn src_op(&self, α: &Self::MorOp) -> Self::ObOp;
150
151 fn tgt_op(&self, α: &Self::MorOp) -> Self::ObOp;
153
154 fn mor_op_dom(&self, α: &Self::MorOp) -> Path<Self::ObType, Self::MorType>;
156
157 fn mor_op_cod(&self, α: &Self::MorOp) -> Self::MorType;
159
160 fn compose_types(&self, path: Path<Self::ObType, Self::MorType>) -> Option<Self::MorType>;
162
163 fn hom_type(&self, x: Self::ObType) -> Self::MorType {
169 self.compose_types(Path::Id(x))
170 .expect("A double theory should have a hom type for each object type")
171 }
172
173 fn compose_ob_ops(&self, path: Path<Self::ObType, Self::ObOp>) -> Self::ObOp;
175
176 fn id_ob_op(&self, x: Self::ObType) -> Self::ObOp {
182 self.compose_ob_ops(Path::Id(x))
183 }
184
185 fn hom_op(&self, f: Self::ObOp) -> Self::MorOp;
191
192 fn compose_mor_ops(&self, tree: DblTree<Self::ObOp, Self::MorType, Self::MorOp>)
194 -> Self::MorOp;
195
196 fn id_mor_op(&self, m: Self::MorType) -> Self::MorOp {
202 self.compose_mor_ops(DblTree::empty(m))
203 }
204}
205
206impl<VDC: VDCWithComposites> DblTheory for VDC {
207 type ObType = VDC::Ob;
208 type MorType = VDC::Pro;
209 type ObOp = VDC::Arr;
210 type MorOp = VDC::Cell;
211
212 fn has_ob_type(&self, x: &Self::ObType) -> bool {
213 self.has_ob(x)
214 }
215 fn has_mor_type(&self, m: &Self::MorType) -> bool {
216 self.has_proarrow(m)
217 }
218 fn has_ob_op(&self, f: &Self::ObOp) -> bool {
219 self.has_arrow(f)
220 }
221 fn has_mor_op(&self, α: &Self::MorOp) -> bool {
222 self.has_cell(α)
223 }
224
225 fn src_type(&self, m: &Self::MorType) -> Self::ObType {
226 self.src(m)
227 }
228 fn tgt_type(&self, m: &Self::MorType) -> Self::ObType {
229 self.tgt(m)
230 }
231 fn ob_op_dom(&self, f: &Self::ObOp) -> Self::ObType {
232 self.dom(f)
233 }
234 fn ob_op_cod(&self, f: &Self::ObOp) -> Self::ObType {
235 self.cod(f)
236 }
237
238 fn src_op(&self, α: &Self::MorOp) -> Self::ObOp {
239 self.cell_src(α)
240 }
241 fn tgt_op(&self, α: &Self::MorOp) -> Self::ObOp {
242 self.cell_tgt(α)
243 }
244 fn mor_op_dom(&self, α: &Self::MorOp) -> Path<Self::ObType, Self::MorType> {
245 self.cell_dom(α)
246 }
247 fn mor_op_cod(&self, α: &Self::MorOp) -> Self::MorType {
248 self.cell_cod(α)
249 }
250
251 fn compose_types(&self, path: Path<Self::ObType, Self::MorType>) -> Option<Self::MorType> {
252 self.composite(path)
253 }
254 fn hom_type(&self, x: Self::ObType) -> Self::MorType {
255 self.unit(x).expect("A double theory should have all hom types")
256 }
257 fn hom_op(&self, f: Self::ObOp) -> Self::MorOp {
258 let y = self.cod(&f);
259 let y_ext = self.unit_ext(y).expect("Codomain of arrow should have hom type");
260 let cell = self.compose_cells(
261 DblTree::from_nodes(vec![DblNode::Spine(f), DblNode::Cell(y_ext)]).unwrap(),
262 );
263 self.through_unit(cell, 0).expect("Domain of arrow should have hom type")
264 }
265
266 fn compose_ob_ops(&self, path: Path<Self::ObType, Self::ObOp>) -> Self::ObOp {
267 self.compose(path)
268 }
269 fn id_ob_op(&self, x: Self::ObType) -> Self::ObOp {
270 self.id(x)
271 }
272
273 fn compose_mor_ops(
274 &self,
275 tree: DblTree<Self::ObOp, Self::MorType, Self::MorOp>,
276 ) -> Self::MorOp {
277 self.compose_cells(tree)
278 }
279 fn id_mor_op(&self, m: Self::MorType) -> Self::MorOp {
280 self.id_cell(m)
281 }
282}
283
284#[derive(From, RefCast, Debug)]
294#[repr(transparent)]
295pub struct DiscreteDblTheory<Cat: FgCategory>(Cat);
296
297pub type UstrDiscreteDblTheory = DiscreteDblTheory<UstrFinCategory>;
299
300impl<C: FgCategory> VDblCategory for DiscreteDblTheory<C>
301where
302 C::Ob: Clone,
303 C::Mor: Clone,
304{
305 type Ob = C::Ob;
306 type Arr = C::Ob;
307 type Pro = C::Mor;
308 type Cell = Path<C::Ob, C::Mor>;
309
310 fn has_ob(&self, ob: &Self::Ob) -> bool {
311 self.0.has_ob(ob)
312 }
313 fn has_arrow(&self, arr: &Self::Arr) -> bool {
314 self.0.has_ob(arr)
315 }
316 fn has_proarrow(&self, pro: &Self::Pro) -> bool {
317 self.0.has_mor(pro)
318 }
319 fn has_cell(&self, path: &Self::Cell) -> bool {
320 path.contained_in(UnderlyingGraph::ref_cast(&self.0))
321 }
322
323 fn dom(&self, f: &Self::Arr) -> Self::Ob {
324 f.clone()
325 }
326 fn cod(&self, f: &Self::Arr) -> Self::Ob {
327 f.clone()
328 }
329 fn src(&self, m: &Self::Pro) -> Self::Ob {
330 self.0.dom(m)
331 }
332 fn tgt(&self, m: &Self::Pro) -> Self::Ob {
333 self.0.cod(m)
334 }
335
336 fn cell_dom(&self, path: &Self::Cell) -> Path<Self::Ob, Self::Pro> {
337 path.clone()
338 }
339 fn cell_cod(&self, path: &Self::Cell) -> Self::Pro {
340 self.composite(path.clone()).expect("Path should have a composite")
341 }
342 fn cell_src(&self, path: &Self::Cell) -> Self::Arr {
343 path.src(UnderlyingGraph::ref_cast(&self.0))
344 }
345 fn cell_tgt(&self, path: &Self::Cell) -> Self::Arr {
346 path.tgt(UnderlyingGraph::ref_cast(&self.0))
347 }
348
349 fn compose(&self, path: Path<Self::Ob, Self::Arr>) -> Self::Arr {
350 let disc = DiscreteCategory::ref_cast(ObSet::ref_cast(&self.0));
351 disc.compose(path)
352 }
353
354 fn compose_cells(&self, tree: DblTree<Self::Arr, Self::Pro, Self::Cell>) -> Self::Cell {
355 tree.dom(UnderlyingDblGraph::ref_cast(self))
356 }
357}
358
359impl<C: FgCategory> VDCWithComposites for DiscreteDblTheory<C>
360where
361 C::Ob: Clone,
362 C::Mor: Clone,
363{
364 fn composite(&self, path: Path<Self::Ob, Self::Pro>) -> Option<Self::Pro> {
365 Some(self.0.compose(path))
366 }
367
368 fn composite_ext(&self, path: Path<Self::Ob, Self::Pro>) -> Option<Self::Cell> {
370 Some(path)
371 }
372
373 fn through_composite(&self, path: Self::Cell, range: Range<usize>) -> Option<Self::Cell> {
374 let graph = UnderlyingGraph::ref_cast(&self.0);
375 Some(path.replace_subpath(graph, range, |subpath| self.0.compose(subpath).into()))
376 }
377}
378
379impl<C: FgCategory + Validate> Validate for DiscreteDblTheory<C> {
380 type ValidationError = C::ValidationError;
381
382 fn validate(&self) -> Result<(), nonempty::NonEmpty<Self::ValidationError>> {
383 self.0.validate()
384 }
385}
386
387#[derive(Clone, Debug, PartialEq, Eq, Hash)]
389pub enum TabObType<V, E> {
390 Basic(V),
392
393 Tabulator(Box<TabMorType<V, E>>),
395}
396
397#[derive(Clone, Debug, PartialEq, Eq, Hash)]
399pub enum TabMorType<V, E> {
400 Basic(E),
402
403 Hom(Box<TabObType<V, E>>),
405}
406
407#[derive(Clone, Debug, PartialEq, Eq)]
409pub enum TabObProj<V, E> {
410 Src(TabMorType<V, E>),
412
413 Tgt(TabMorType<V, E>),
415}
416
417impl<V, E> TabObProj<V, E> {
418 pub fn mor_type(&self) -> &TabMorType<V, E> {
420 match self {
421 TabObProj::Src(m) | TabObProj::Tgt(m) => m,
422 }
423 }
424}
425
426pub type TabObOp<V, E> = Path<TabObType<V, E>, TabObProj<V, E>>;
428
429#[derive(Clone, Debug, PartialEq, Eq)]
431pub enum TabMorProj<V, E> {
432 Cone(TabMorType<V, E>),
434
435 Src(TabMorType<V, E>),
437
438 Tgt(TabMorType<V, E>),
440}
441
442impl<V, E> TabMorProj<V, E> {
443 pub fn mor_type(&self) -> &TabMorType<V, E> {
445 match self {
446 TabMorProj::Cone(m) | TabMorProj::Src(m) | TabMorProj::Tgt(m) => m,
447 }
448 }
449
450 fn src(self) -> TabObProj<V, E> {
452 match self {
453 TabMorProj::Cone(m) | TabMorProj::Src(m) => TabObProj::Src(m),
454 TabMorProj::Tgt(m) => TabObProj::Tgt(m),
455 }
456 }
457
458 fn tgt(self) -> TabObProj<V, E> {
460 match self {
461 TabMorProj::Src(m) => TabObProj::Src(m),
462 TabMorProj::Cone(m) | TabMorProj::Tgt(m) => TabObProj::Tgt(m),
463 }
464 }
465}
466
467#[derive(Clone, Debug, PartialEq, Eq)]
469pub struct TabMorOp<V, E> {
470 dom: Path<TabObType<V, E>, TabMorType<V, E>>,
471 projections: Vec<TabMorProj<V, E>>,
472}
473
474#[derive(Clone, Derivative)]
485#[derivative(Default(bound = "S: Default"))]
486pub struct DiscreteTabTheory<V, E, S = RandomState> {
487 ob_types: HashFinSet<V, S>,
488 mor_types: HashFinSet<E, S>,
489 src: HashColumn<E, TabObType<V, E>, S>,
490 tgt: HashColumn<E, TabObType<V, E>, S>,
491 compose_map: HashColumn<(E, E), TabMorType<V, E>>,
492}
493
494pub type UstrDiscreteTabTheory = DiscreteTabTheory<Ustr, Ustr, BuildHasherDefault<IdentityHasher>>;
496
497impl<V, E, S> DiscreteTabTheory<V, E, S>
498where
499 V: Eq + Clone + Hash,
500 E: Eq + Clone + Hash,
501 S: BuildHasher,
502{
503 pub fn new() -> Self
505 where
506 S: Default,
507 {
508 Default::default()
509 }
510
511 pub fn tabulator(&self, m: TabMorType<V, E>) -> TabObType<V, E> {
513 TabObType::Tabulator(Box::new(m))
514 }
515
516 pub fn unary_projection(&self, proj: TabMorProj<V, E>) -> TabMorOp<V, E> {
518 TabMorOp {
519 dom: self.hom_type(self.tabulator(proj.mor_type().clone())).into(),
520 projections: vec![proj],
521 }
522 }
523
524 pub fn add_ob_type(&mut self, v: V) -> bool {
526 self.ob_types.insert(v)
527 }
528
529 pub fn add_mor_type(&mut self, e: E, src: TabObType<V, E>, tgt: TabObType<V, E>) -> bool {
531 self.src.set(e.clone(), src);
532 self.tgt.set(e.clone(), tgt);
533 self.make_mor_type(e)
534 }
535
536 pub fn make_mor_type(&mut self, e: E) -> bool {
538 self.mor_types.insert(e)
539 }
540}
541
542#[derive(RefCast)]
544#[repr(transparent)]
545struct DiscTabTheoryProjGraph<V, E, S>(DiscreteTabTheory<V, E, S>);
546
547impl<V, E, S> Graph for DiscTabTheoryProjGraph<V, E, S>
548where
549 V: Eq + Clone + Hash,
550 E: Eq + Clone + Hash,
551 S: BuildHasher,
552{
553 type V = TabObType<V, E>;
554 type E = TabObProj<V, E>;
555
556 fn has_vertex(&self, x: &Self::V) -> bool {
557 self.0.has_ob(x)
558 }
559 fn has_edge(&self, proj: &Self::E) -> bool {
560 self.0.has_proarrow(proj.mor_type())
561 }
562
563 fn src(&self, proj: &Self::E) -> Self::V {
564 TabObType::Tabulator(Box::new(proj.mor_type().clone()))
565 }
566 fn tgt(&self, proj: &Self::E) -> Self::V {
567 match proj {
568 TabObProj::Src(m) => self.0.src(m),
569 TabObProj::Tgt(m) => self.0.tgt(m),
570 }
571 }
572}
573
574impl<V, E, S> VDblCategory for DiscreteTabTheory<V, E, S>
575where
576 V: Eq + Clone + Hash,
577 E: Eq + Clone + Hash,
578 S: BuildHasher,
579{
580 type Ob = TabObType<V, E>;
581 type Arr = TabObOp<V, E>;
582 type Pro = TabMorType<V, E>;
583 type Cell = TabMorOp<V, E>;
584
585 fn has_ob(&self, ob: &Self::Ob) -> bool {
586 match ob {
587 TabObType::Basic(v) => self.ob_types.contains(v),
588 TabObType::Tabulator(m) => self.has_proarrow(m),
589 }
590 }
591 fn has_arrow(&self, path: &Self::Arr) -> bool {
592 path.contained_in(DiscTabTheoryProjGraph::ref_cast(self))
593 }
594 fn has_proarrow(&self, pro: &Self::Pro) -> bool {
595 match pro {
596 TabMorType::Basic(e) => self.mor_types.contains(e),
597 TabMorType::Hom(x) => self.has_ob(x),
598 }
599 }
600 fn has_cell(&self, cell: &Self::Cell) -> bool {
601 let graph = ProedgeGraph::ref_cast(UnderlyingDblGraph::ref_cast(self));
602 if !cell.dom.contained_in(graph) {
603 return false;
604 }
605 let (src, tgt) = (self.cell_src(cell), self.cell_tgt(cell));
606 self.has_arrow(&src)
607 && self.has_arrow(&tgt)
608 && cell.dom.src(graph) == self.dom(&src)
609 && cell.dom.tgt(graph) == self.dom(&tgt)
610 }
611
612 fn dom(&self, path: &Self::Arr) -> Self::Ob {
613 path.src(DiscTabTheoryProjGraph::ref_cast(self))
614 }
615 fn cod(&self, path: &Self::Arr) -> Self::Ob {
616 path.tgt(DiscTabTheoryProjGraph::ref_cast(self))
617 }
618 fn src(&self, m: &Self::Pro) -> Self::Ob {
619 match m {
620 TabMorType::Basic(e) => {
621 self.src.apply(e).expect("Source of morphism type should be defined")
622 }
623 TabMorType::Hom(x) => (**x).clone(),
624 }
625 }
626 fn tgt(&self, m: &Self::Pro) -> Self::Ob {
627 match m {
628 TabMorType::Basic(e) => {
629 self.tgt.apply(e).expect("Target of morphism type should be defined")
630 }
631 TabMorType::Hom(x) => (**x).clone(),
632 }
633 }
634
635 fn cell_dom(&self, cell: &Self::Cell) -> Path<Self::Ob, Self::Pro> {
636 cell.dom.clone()
637 }
638 fn cell_cod(&self, cell: &Self::Cell) -> Self::Pro {
639 self.composite(cell.dom.clone()).expect("Path should have a composite")
640 }
641 fn cell_src(&self, cell: &Self::Cell) -> Self::Arr {
642 let graph = ProedgeGraph::ref_cast(UnderlyingDblGraph::ref_cast(self));
643 Path::collect(cell.projections.iter().cloned().map(|proj| proj.src()))
644 .unwrap_or_else(|| Path::empty(cell.dom.src(graph)))
645 }
646 fn cell_tgt(&self, cell: &Self::Cell) -> Self::Arr {
647 let graph = ProedgeGraph::ref_cast(UnderlyingDblGraph::ref_cast(self));
648 Path::collect(cell.projections.iter().cloned().map(|proj| proj.tgt()))
649 .unwrap_or_else(|| Path::empty(cell.dom.tgt(graph)))
650 }
651
652 fn compose(&self, path: Path<Self::Ob, Self::Arr>) -> Self::Arr {
653 path.flatten()
654 }
655
656 fn compose_cells(&self, tree: DblTree<Self::Arr, Self::Pro, Self::Cell>) -> Self::Cell {
657 let graph = UnderlyingDblGraph::ref_cast(self);
658 let dom = tree.dom(graph);
659 let src = self.compose(tree.src(graph));
660 let tgt = self.compose(tree.tgt(graph));
661 assert_eq!(src.len(), tgt.len(), "Source/target boundaries should have equal length");
662 let projections = std::iter::zip(src, tgt)
663 .map(|pair| match pair {
664 (TabObProj::Src(m), TabObProj::Tgt(n)) if m == n => TabMorProj::Cone(m),
665 (TabObProj::Src(m), TabObProj::Src(n)) if m == n => TabMorProj::Src(m),
666 (TabObProj::Tgt(m), TabObProj::Tgt(n)) if m == n => TabMorProj::Tgt(m),
667 _ => panic!("Projection cells should have compatible source/target boundaries"),
668 })
669 .collect();
670 TabMorOp { dom, projections }
671 }
672}
673
674impl<V, E, S> VDCWithComposites for DiscreteTabTheory<V, E, S>
675where
676 V: Eq + Clone + Hash,
677 E: Eq + Clone + Hash,
678 S: BuildHasher,
679{
680 fn composite2(&self, m: Self::Pro, n: Self::Pro) -> Option<Self::Pro> {
681 let mn = match (m, n) {
682 (m, TabMorType::Hom(y)) if self.tgt(&m) == *y => m,
683 (TabMorType::Hom(x), n) if self.src(&n) == *x => n,
684 (TabMorType::Basic(d), TabMorType::Basic(e)) => {
685 self.compose_map.apply(&(d, e)).expect("Composition should be defined")
686 }
687 _ => panic!("Ill-typed composite of morphism types in discrete tabulator theory"),
688 };
689 Some(mn)
690 }
691 fn unit(&self, x: Self::Ob) -> Option<Self::Pro> {
692 Some(TabMorType::Hom(Box::new(x)))
693 }
694 fn composite(&self, path: Path<Self::Ob, Self::Pro>) -> Option<Self::Pro> {
695 Some(path.reduce(|x| self.unit(x).unwrap(), |m, n| self.composite2(m, n).unwrap()))
696 }
697
698 fn composite_ext(&self, path: Path<Self::Ob, Self::Pro>) -> Option<Self::Cell> {
699 Some(TabMorOp {
700 dom: path,
701 projections: vec![],
702 })
703 }
704
705 fn through_composite(&self, cell: Self::Cell, range: Range<usize>) -> Option<Self::Cell> {
706 let graph = ProedgeGraph::ref_cast(UnderlyingDblGraph::ref_cast(self));
707 let TabMorOp { dom, projections } = cell;
708 Some(TabMorOp {
709 dom: dom.replace_subpath(graph, range, |sub| self.composite(sub).unwrap().into()),
710 projections,
711 })
712 }
713}
714
715#[cfg(test)]
716mod tests {
717 use super::*;
718 use crate::one::fin_category::*;
719
720 #[test]
721 fn discrete_double_theory() {
722 type Mor<V, E> = FinMor<V, E>;
723
724 let mut sgn: FinCategory<char, char> = Default::default();
725 sgn.add_ob_generator('*');
726 sgn.add_mor_generator('n', '*', '*');
727 sgn.set_composite('n', 'n', Mor::Id('*'));
728
729 let th = DiscreteDblTheory::from(sgn);
730 assert!(th.has_ob_type(&'*'));
731 assert!(th.has_mor_type(&Mor::Generator('n')));
732 let path = Path::pair(Mor::Generator('n'), Mor::Generator('n'));
733 assert_eq!(th.compose_types(path), Some(Mor::Id('*')));
734
735 assert_eq!(th.hom_type('*'), Mor::Id('*'));
736 assert_eq!(th.hom_op('*'), Path::single(Mor::Id('*')));
737 }
738
739 #[test]
740 fn discrete_tabulator_theory() {
741 let mut th = DiscreteTabTheory::<char, char>::new();
742 th.add_ob_type('*');
743 let x = TabObType::Basic('*');
744 assert!(th.has_ob_type(&x));
745 let tab = th.tabulator(th.hom_type(x.clone()));
746 assert!(th.has_ob_type(&tab));
747 assert!(th.has_mor_type(&th.hom_type(tab.clone())));
748
749 th.add_mor_type('m', x.clone(), tab.clone());
750 let m = TabMorType::Basic('m');
751 assert!(th.has_mor_type(&m));
752 assert_eq!(th.src_type(&m), x);
753 assert_eq!(th.tgt_type(&m), tab);
754
755 let proj = th.unary_projection(TabMorProj::Cone(th.hom_type(x.clone())));
756 let cell = th.compose_cells2(
757 [th.composite2_ext(th.hom_type(tab.clone()), th.hom_type(tab.clone())).unwrap()],
758 proj.clone(),
759 );
760 assert!(th.has_mor_op(&cell));
761 assert!(matches!(th.src_op(&cell).only(), Some(TabObProj::Src(_))));
762 assert!(matches!(th.tgt_op(&cell).only(), Some(TabObProj::Tgt(_))));
763
764 let proj_src = th.unary_projection(TabMorProj::Src(th.hom_type(x.clone())));
765 let cell_alt = th.compose_cells2(
766 [proj_src, proj],
767 th.composite2_ext(th.hom_type(x.clone()), th.hom_type(x.clone())).unwrap(),
768 );
769 assert!(th.has_mor_op(&cell_alt));
770 assert_eq!(cell, cell_alt);
771 }
772}