1use derive_more::From;
5use ref_cast::RefCast;
6
7use super::graph::{FinGraph, Graph};
8use super::path::Path;
9use crate::zero::{FinSet, Set};
10
11pub trait Category {
24 type Ob: Eq + Clone;
26
27 type Mor: Eq + Clone;
29
30 fn has_ob(&self, x: &Self::Ob) -> bool;
32
33 fn has_mor(&self, f: &Self::Mor) -> bool;
35
36 fn dom(&self, f: &Self::Mor) -> Self::Ob;
38
39 fn cod(&self, f: &Self::Mor) -> Self::Ob;
41
42 fn compose(&self, path: Path<Self::Ob, Self::Mor>) -> Self::Mor;
44
45 fn compose2(&self, f: Self::Mor, g: Self::Mor) -> Self::Mor {
47 self.compose(Path::pair(f, g))
48 }
49
50 fn id(&self, x: Self::Ob) -> Self::Mor {
52 self.compose(Path::empty(x))
53 }
54}
55
56#[derive(From, RefCast)]
58#[repr(transparent)]
59pub struct ObSet<Cat: Category>(Cat);
60
61impl<Cat: Category> Set for ObSet<Cat> {
62 type Elem = Cat::Ob;
63
64 fn contains(&self, x: &Cat::Ob) -> bool {
65 self.0.has_ob(x)
66 }
67}
68
69#[derive(From, RefCast)]
75#[repr(transparent)]
76pub struct DiscreteCategory<S: Set>(S);
77
78impl<S: Set> Category for DiscreteCategory<S> {
79 type Ob = S::Elem;
80 type Mor = S::Elem;
81
82 fn has_ob(&self, x: &S::Elem) -> bool {
83 self.0.contains(x)
84 }
85 fn has_mor(&self, f: &S::Elem) -> bool {
86 self.0.contains(f)
87 }
88 fn dom(&self, x: &S::Elem) -> S::Elem {
89 x.clone()
90 }
91 fn cod(&self, x: &S::Elem) -> S::Elem {
92 x.clone()
93 }
94
95 fn compose(&self, path: Path<S::Elem, S::Elem>) -> S::Elem {
96 match path {
97 Path::Id(x) => x,
98 Path::Seq(xs) => {
99 let x = xs.head;
100 assert!(
101 xs.tail.into_iter().all(|y| x == y),
102 "Cannot compose identities on different objects"
103 );
104 x
105 }
106 }
107 }
108}
109
110#[derive(From, RefCast)]
116#[repr(transparent)]
117pub struct UnderlyingGraph<Cat: Category>(Cat);
118
119impl<Cat: Category> Graph for UnderlyingGraph<Cat> {
120 type V = Cat::Ob;
121 type E = Cat::Mor;
122
123 fn has_vertex(&self, x: &Self::V) -> bool {
124 self.0.has_ob(x)
125 }
126 fn has_edge(&self, f: &Self::E) -> bool {
127 self.0.has_mor(f)
128 }
129 fn src(&self, f: &Self::E) -> Self::V {
130 self.0.dom(f)
131 }
132 fn tgt(&self, f: &Self::E) -> Self::V {
133 self.0.cod(f)
134 }
135}
136
137#[derive(From, RefCast)]
143#[repr(transparent)]
144pub struct FreeCategory<G: Graph>(G);
145
146impl<G: Graph> Category for FreeCategory<G> {
147 type Ob = G::V;
148 type Mor = Path<G::V, G::E>;
149
150 fn has_ob(&self, x: &G::V) -> bool {
151 self.0.has_vertex(x)
152 }
153 fn has_mor(&self, path: &Path<G::V, G::E>) -> bool {
154 path.contained_in(&self.0)
155 }
156 fn dom(&self, path: &Path<G::V, G::E>) -> G::V {
157 path.src(&self.0)
158 }
159 fn cod(&self, path: &Path<G::V, G::E>) -> G::V {
160 path.tgt(&self.0)
161 }
162
163 fn compose(&self, path: Path<G::V, Path<G::V, G::E>>) -> Path<G::V, G::E> {
164 path.flatten_in(&self.0).expect("Paths should be composable")
165 }
166 fn compose2(&self, path1: Path<G::V, G::E>, path2: Path<G::V, G::E>) -> Path<G::V, G::E> {
167 path1
168 .concat_in(&self.0, path2)
169 .expect("Target of first path should equal source of second path")
170 }
171}
172
173pub trait FgCategory: Category {
182 type ObGen: Eq + Clone + Into<Self::Ob>;
187
188 type MorGen: Eq + Clone + Into<Self::Mor>;
193
194 fn ob_generators(&self) -> impl Iterator<Item = Self::ObGen>;
196
197 fn mor_generators(&self) -> impl Iterator<Item = Self::MorGen>;
199
200 fn mor_generator_dom(&self, f: &Self::MorGen) -> Self::Ob;
202
203 fn mor_generator_cod(&self, f: &Self::MorGen) -> Self::Ob;
205
206 fn objects(&self) -> impl Iterator<Item = Self::Ob> {
208 self.ob_generators().map(|ob_gen| ob_gen.into())
209 }
210
211 fn morphisms(&self) -> impl Iterator<Item = Self::Mor> {
213 self.mor_generators().map(|mor_gen| mor_gen.into())
214 }
215}
216
217impl<S: FinSet> FgCategory for DiscreteCategory<S> {
218 type ObGen = S::Elem;
219 type MorGen = S::Elem;
220
221 fn ob_generators(&self) -> impl Iterator<Item = Self::ObGen> {
222 self.0.iter()
223 }
224
225 fn mor_generators(&self) -> impl Iterator<Item = Self::MorGen> {
226 self.0.iter()
227 }
228
229 fn mor_generator_dom(&self, f: &Self::MorGen) -> Self::Ob {
230 f.clone()
231 }
232
233 fn mor_generator_cod(&self, f: &Self::MorGen) -> Self::Ob {
234 f.clone()
235 }
236}
237
238impl<G: FinGraph> FgCategory for FreeCategory<G> {
239 type ObGen = G::V;
240 type MorGen = G::E;
241
242 fn ob_generators(&self) -> impl Iterator<Item = Self::ObGen> {
243 self.0.vertices()
244 }
245
246 fn mor_generators(&self) -> impl Iterator<Item = Self::MorGen> {
247 self.0.edges()
248 }
249
250 fn mor_generator_dom(&self, f: &Self::MorGen) -> Self::Ob {
251 self.0.src(f)
252 }
253
254 fn mor_generator_cod(&self, f: &Self::MorGen) -> Self::Ob {
255 self.0.tgt(f)
256 }
257}
258
259#[cfg(test)]
260mod tests {
261 use nonempty::nonempty;
262
263 use super::super::graph::SkelGraph;
264 use super::*;
265 use crate::zero::SkelFinSet;
266
267 #[test]
268 fn discrete_category() {
269 let cat = DiscreteCategory::from(SkelFinSet::from(3));
270 assert!(cat.has_ob(&2));
271 assert!(cat.has_mor(&2));
272 assert!(!cat.has_mor(&3));
273 assert_eq!(cat.dom(&1), 1);
274 assert_eq!(cat.cod(&1), 1);
275 assert_eq!(cat.compose(Path::Seq(nonempty![1, 1, 1])), 1);
276 }
277
278 #[test]
279 fn free_category() {
280 let cat = FreeCategory::from(SkelGraph::triangle());
281 assert!(cat.has_ob(&2));
282 assert_eq!(cat.ob_generators().count(), 3);
283 assert_eq!(cat.mor_generators().count(), 3);
284
285 let id = Path::Id(1);
286 assert!(cat.has_mor(&id));
287 assert_eq!(cat.dom(&id), 1);
288 assert_eq!(cat.cod(&id), 1);
289
290 let path = Path::pair(0, 1);
291 assert!(cat.has_mor(&path));
292 assert!(!cat.has_mor(&Path::pair(0, 2)));
293 assert_eq!(cat.dom(&path), 0);
294 assert_eq!(cat.cod(&path), 2);
295
296 let cat = FreeCategory::from(SkelGraph::path(5));
297 let path = Path::Seq(nonempty![
298 Path::Id(0),
299 Path::pair(0, 1),
300 Path::Id(2),
301 Path::pair(2, 3),
302 Path::Id(4),
303 ]);
304 let result = Path::Seq(nonempty![0, 1, 2, 3]);
305 assert_eq!(cat.compose(path), result);
306 assert_eq!(cat.compose2(Path::pair(0, 1), Path::pair(2, 3)), result);
307 }
308}