catlog/zero/
rig.rs

1/*! Rigs, rings, and modules over them.
2
3Lots of people have their own versions of a trait hierarchy for abstract
4algebra; see [`noether`](https://crates.io/crates/noether) and links therein.
5Our aim is not to make the most complete or general hierarchy but just to meet
6our own needs. Currently that is a bit of [commutative algebra](super::alg),
7especially polynomial algebras over rings. So we avoid slicing the salomi too
8thin with minor concepts like magmas and semigroups. We take the category
9theorist's attitude that rigs are a respectable concept that do not deserve to
10be called "semirings".
11
12Besides the hierarchy of traits, this module provides data structures for
13[linear combinations](Combination) and [monomials](Monomial). These are actually
14the same data structure, but with different notation!
15 */
16
17use num_traits::{One, Pow, Zero};
18use std::collections::BTreeMap;
19use std::fmt::Display;
20use std::iter::{Product, Sum};
21use std::ops::{Add, AddAssign, Mul, MulAssign, Neg};
22
23use derivative::Derivative;
24use duplicate::duplicate_item;
25
26/// A commutative monoid, written additively.
27pub trait AdditiveMonoid: Add<Output = Self> + Zero {}
28
29#[duplicate_item(T; [f32]; [f64]; [i32]; [i64]; [u32]; [u64]; [usize])]
30impl AdditiveMonoid for T {}
31
32/** An abelian group, written additively.
33
34Though logically redundant, this trait should also extend `Sub<Output = Self>`.
35So far I've been too lazy to make this change since the extra trait cannot be
36automatically derived without macro magic.
37 */
38pub trait AbGroup: AdditiveMonoid + Neg<Output = Self> {}
39
40#[duplicate_item(T; [f32]; [f64]; [i32]; [i64])]
41impl AbGroup for T {}
42
43/// A monoid, written multiplicatively.
44pub trait Monoid: Mul<Output = Self> + One {}
45
46#[duplicate_item(T; [f32]; [f64]; [i32]; [i64]; [u32]; [u64]; [usize])]
47impl Monoid for T {}
48
49/// A commutative monoid, written multiplicatively.
50pub trait CommMonoid: Monoid {}
51
52#[duplicate_item(T; [f32]; [f64]; [i32]; [i64]; [u32]; [u64]; [usize])]
53impl CommMonoid for T {}
54
55/// A rig, also known as a semiring.
56pub trait Rig: Monoid + AdditiveMonoid {}
57
58#[duplicate_item(T; [f32]; [f64]; [i32]; [i64]; [u32]; [u64]; [usize])]
59impl Rig for T {}
60
61/// A commutative rig, also known as a commutative semiring.
62pub trait CommRig: Rig + CommMonoid {}
63
64#[duplicate_item(T; [f32]; [f64]; [i32]; [i64]; [u32]; [u64]; [usize])]
65impl CommRig for T {}
66
67/// A ring, assumed to be unital.
68pub trait Ring: Rig + AbGroup {}
69
70#[duplicate_item(T; [f32]; [f64]; [i32]; [i64])]
71impl Ring for T {}
72
73/// A commutative ring, assumed to be unital.
74pub trait CommRing: Ring + CommRig {}
75
76#[duplicate_item(T; [f32]; [f64]; [i32]; [i64])]
77impl CommRing for T {}
78
79/// A module over a commutative rig.
80pub trait RigModule: AdditiveMonoid + Mul<Self::Rig, Output = Self> {
81    /// Base rig for the module.
82    type Rig: CommRig;
83}
84
85/// A module over a commutative ring.
86pub trait Module: RigModule<Rig = Self::Ring> + AbGroup {
87    /// Base ring for the module.
88    type Ring: CommRing;
89}
90
91/** A formal linear combination.
92
93This data structure is for linear combinations of indeterminates/variables
94(`Var`) with coefficients (`Coef`) valued in a [rig](Rig) or at minimum in an
95[additive monoid](AdditiveMonoid). For example, the coefficients could be
96natural numbers, integers, real numbers, or nonnegative real numbers.
97
98Linear combinations are the data structure for free modules. That is, for any
99rig R, the free R-module on a set consists of formal R-linear combinations on
100elements of the set.
101
102Combinations have exactly the same underlying data structure as
103[monomials](Monomial), but are written additively rather than multiplicatively.
104 */
105#[derive(Clone, PartialEq, Eq, Derivative)]
106#[derivative(Default(bound = ""))]
107pub struct Combination<Var, Coef>(BTreeMap<Var, Coef>);
108
109impl<Var, Coef> Combination<Var, Coef>
110where
111    Var: Ord,
112{
113    /// Constructs the generating combination corresponding to a variable.
114    pub fn generator(var: Var) -> Self
115    where
116        Coef: One,
117    {
118        Combination([(var, Coef::one())].into_iter().collect())
119    }
120
121    /// Iterates over the variables used in the combination.
122    pub fn variables(&self) -> impl ExactSizeIterator<Item = &Var> {
123        self.0.keys()
124    }
125
126    /** Maps the coefficients in the combination.
127
128    In the usual situation when the coefficients form rigs and the mapping is a
129    rig homomorphism, this operation is [extension of
130    scalars](https://ncatlab.org/nlab/show/extension+of+scalars) applied to
131    free modules.
132     */
133    pub fn extend_scalars<NewCoef, F>(self, mut f: F) -> Combination<Var, NewCoef>
134    where
135        F: FnMut(Coef) -> NewCoef,
136    {
137        Combination(self.0.into_iter().map(|(var, coef)| (var, f(coef))).collect())
138    }
139
140    /// Evaluates the combination by substituting for the variables.
141    pub fn eval<A, F>(&self, mut f: F) -> A
142    where
143        A: Mul<Coef, Output = A> + Sum,
144        F: FnMut(&Var) -> A,
145        Coef: Clone,
146    {
147        self.0.iter().map(|(var, coef)| f(var) * coef.clone()).sum()
148    }
149
150    /** Evaluates the combination by substituting from a sequence of values.
151
152    The order of the values should correspond to the order of the variables.
153    Will panic if the number of values does not equal the length of the
154    combination.
155     */
156    pub fn eval_with_order<A>(&self, values: impl IntoIterator<Item = A>) -> A
157    where
158        A: Mul<Coef, Output = A> + Sum,
159        Coef: Clone,
160    {
161        let mut iter = values.into_iter();
162        let value = self.eval(|_| iter.next().expect("Should have enough values"));
163        assert!(iter.next().is_none(), "Too many values");
164        value
165    }
166}
167
168/// Constructs a combination from a list of terms (coefficient-variable pairs).
169impl<Var, Coef> FromIterator<(Coef, Var)> for Combination<Var, Coef>
170where
171    Var: Ord,
172    Coef: Add<Output = Coef>,
173{
174    fn from_iter<T: IntoIterator<Item = (Coef, Var)>>(iter: T) -> Self {
175        let mut combination = Combination::zero();
176        for rhs in iter {
177            combination += rhs;
178        }
179        combination
180    }
181}
182
183/// Iterates over the terms (coefficient-variable pairs) of the polynomial.
184impl<Var, Coef> IntoIterator for Combination<Var, Coef> {
185    type Item = (Coef, Var);
186
187    type IntoIter = std::iter::Map<
188        std::collections::btree_map::IntoIter<Var, Coef>,
189        fn((Var, Coef)) -> (Coef, Var),
190    >;
191
192    fn into_iter(self) -> Self::IntoIter {
193        self.0.into_iter().map(|(var, coef)| (coef, var))
194    }
195}
196
197impl<'a, Var, Coef> IntoIterator for &'a Combination<Var, Coef> {
198    type Item = (&'a Coef, &'a Var);
199
200    type IntoIter = std::iter::Map<
201        std::collections::btree_map::Iter<'a, Var, Coef>,
202        fn((&'a Var, &'a Coef)) -> (&'a Coef, &'a Var),
203    >;
204
205    fn into_iter(self) -> Self::IntoIter {
206        self.0.iter().map(|(var, coef)| (coef, var))
207    }
208}
209
210/** Pretty print the combination using ASCII.
211
212Intended for debugging/testing rather than any serious use.
213 */
214impl<Var, Coef> Display for Combination<Var, Coef>
215where
216    Var: Display,
217    Coef: Display + PartialEq + One,
218{
219    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
220        let mut pairs = self.0.iter();
221        let fmt_scalar_mul = |f: &mut std::fmt::Formatter<'_>, coef: &Coef, var: &Var| {
222            if !coef.is_one() {
223                let coef = coef.to_string();
224                if coef.chars().all(|c| c.is_alphabetic())
225                    || coef.chars().all(|c| c.is_ascii_digit() || c == '.')
226                {
227                    write!(f, "{} ", coef)?;
228                } else {
229                    write!(f, "({}) ", coef)?;
230                }
231            }
232            write!(f, "{}", var)
233        };
234        if let Some((var, coef)) = pairs.next() {
235            fmt_scalar_mul(f, coef, var)?;
236        } else {
237            write!(f, "0")?;
238        }
239        for (var, coef) in pairs {
240            write!(f, " + ")?;
241            fmt_scalar_mul(f, coef, var)?;
242        }
243        Ok(())
244    }
245}
246
247impl<Var, Coef> AddAssign<(Coef, Var)> for Combination<Var, Coef>
248where
249    Var: Ord,
250    Coef: Add<Output = Coef>,
251{
252    fn add_assign(&mut self, rhs: (Coef, Var)) {
253        let rhs = (rhs.1, rhs.0);
254        _add_assign(&mut self.0, rhs);
255    }
256}
257
258impl<Var, Coef> AddAssign for Combination<Var, Coef>
259where
260    Var: Ord,
261    Coef: Add<Output = Coef>,
262{
263    fn add_assign(&mut self, rhs: Self) {
264        for rhs in rhs.0 {
265            _add_assign(&mut self.0, rhs);
266        }
267    }
268}
269
270fn _add_assign<K, V>(lhs: &mut BTreeMap<K, V>, rhs: (K, V))
271where
272    K: Ord,
273    V: Add<Output = V>,
274{
275    let (k, b) = rhs;
276    if let Some(a) = lhs.remove(&k) {
277        lhs.insert(k, a + b);
278    } else {
279        lhs.insert(k, b);
280    }
281}
282
283impl<Var, Coef> Add for Combination<Var, Coef>
284where
285    Var: Ord,
286    Coef: Add<Output = Coef>,
287{
288    type Output = Self;
289
290    fn add(mut self, rhs: Self) -> Self {
291        self += rhs;
292        self
293    }
294}
295
296impl<Var, Coef> Zero for Combination<Var, Coef>
297where
298    Var: Ord,
299    Coef: Add<Output = Coef>,
300{
301    fn zero() -> Self {
302        Combination(Default::default())
303    }
304
305    fn is_zero(&self) -> bool {
306        self.0.is_empty()
307    }
308}
309
310impl<Var, Coef> AdditiveMonoid for Combination<Var, Coef>
311where
312    Var: Ord,
313    Coef: AdditiveMonoid,
314{
315}
316
317impl<Var, Coef> Mul<Coef> for Combination<Var, Coef>
318where
319    Var: Ord,
320    Coef: Clone + Default + Mul<Output = Coef>,
321{
322    type Output = Self;
323
324    fn mul(mut self, a: Coef) -> Self {
325        for coef in self.0.values_mut() {
326            *coef = std::mem::take(coef) * a.clone();
327        }
328        self
329    }
330}
331
332impl<Var, Coef> RigModule for Combination<Var, Coef>
333where
334    Var: Ord,
335    Coef: Clone + Default + CommRig,
336{
337    type Rig = Coef;
338}
339
340impl<Var, Coef> Neg for Combination<Var, Coef>
341where
342    Var: Ord,
343    Coef: Default + Neg<Output = Coef>,
344{
345    type Output = Self;
346
347    fn neg(mut self) -> Self {
348        for coef in self.0.values_mut() {
349            *coef = std::mem::take(coef).neg();
350        }
351        self
352    }
353}
354
355impl<Var, Coef> AbGroup for Combination<Var, Coef>
356where
357    Var: Ord,
358    Coef: Default + AbGroup,
359{
360}
361
362impl<Var, Coef> Module for Combination<Var, Coef>
363where
364    Var: Ord,
365    Coef: Clone + Default + CommRing,
366{
367    type Ring = Coef;
368}
369
370/** A monomial in several variables.
371
372This data structure is for monomials in several indeterminates/variables
373(`Var`), having exponents (`Exp`) valued in an [additive
374monoid](AdditiveMonoid). Most standardly, the exponents will be natural numbers
375(say `u32` or `u64`), in which case the monomials in a set of variables, under
376their usual multiplication, are the free commutative monoid on that set. Other
377types of coefficents are also allowed, such as negative integers as in Laurent
378polynomials, or real numbers as in
379[S-systems](https://doi.org/10.1016/0895-7177(88)90553-5).
380
381The underlying data structure is a [B-tree map](std::collections::BTreeMap) from
382variables to exponents. Thus, the variable type is assumed to be ordered.
383Moreover, when the exponents are also ordered, as they almost always are, the
384monomials themselves become ordered under the lexicographic order. This is a
385valid *monomial ordering* as used in Groebner bases
386([*IVA*](crate::refs::IdealsVarietiesAlgorithms), Section 2.2).
387 */
388#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Derivative)]
389#[derivative(Default(bound = ""))]
390pub struct Monomial<Var, Exp>(BTreeMap<Var, Exp>);
391
392impl<Var, Exp> Monomial<Var, Exp>
393where
394    Var: Ord,
395{
396    /// Constructs the generating monomial corresponding to a variable.
397    pub fn generator(var: Var) -> Self
398    where
399        Exp: One,
400    {
401        Monomial([(var, Exp::one())].into_iter().collect())
402    }
403
404    /// Iterates over the variables used in the monomial.
405    pub fn variables(&self) -> impl ExactSizeIterator<Item = &Var> {
406        self.0.keys()
407    }
408
409    /// Evaluates the monomial by substituting for the variables.
410    pub fn eval<A, F>(&self, mut f: F) -> A
411    where
412        A: Pow<Exp, Output = A> + Product,
413        F: FnMut(&Var) -> A,
414        Exp: Clone,
415    {
416        self.0.iter().map(|(var, exp)| f(var).pow(exp.clone())).product()
417    }
418
419    /** Evaluates the monomial by substituting from a sequence of values.
420
421    The order of the values should correspond to the order of the variables.
422    Will panic if the number of values does not equal the length of the
423    monomial.
424     */
425    pub fn eval_with_order<A>(&self, values: impl IntoIterator<Item = A>) -> A
426    where
427        A: Pow<Exp, Output = A> + Product,
428        Exp: Clone,
429    {
430        let mut iter = values.into_iter();
431        let value = self.eval(|_| iter.next().expect("Should have enough values"));
432        assert!(iter.next().is_none(), "Too many values");
433        value
434    }
435
436    /** Maps over the variables of the monomial.
437
438    The mapping need not be injective. This is conceptually equivalent to
439    [evaluating](Monomial::eval) the monomial with a map that sends generators
440    to generators.
441     */
442    pub fn map_variables<NewVar, F>(&self, mut f: F) -> Monomial<NewVar, Exp>
443    where
444        Exp: Clone + Add<Output = Exp>,
445        NewVar: Ord,
446        F: FnMut(&Var) -> NewVar,
447    {
448        self.0.iter().map(|(var, exp)| (f(var), exp.clone())).collect()
449    }
450}
451
452/// Constructs a monomial from a sequence of variable-exponent pairs.
453impl<Var, Exp> FromIterator<(Var, Exp)> for Monomial<Var, Exp>
454where
455    Var: Ord,
456    Exp: Add<Output = Exp>,
457{
458    fn from_iter<T: IntoIterator<Item = (Var, Exp)>>(iter: T) -> Self {
459        let mut monomial = Monomial::one();
460        for rhs in iter {
461            monomial *= rhs;
462        }
463        monomial
464    }
465}
466
467/// Pretty print the monomial using ASCII.
468impl<Var, Exp> Display for Monomial<Var, Exp>
469where
470    Var: Display,
471    Exp: Display + PartialEq + One,
472{
473    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
474        let mut pairs = self.0.iter();
475        let fmt_power = |f: &mut std::fmt::Formatter<'_>, var: &Var, exp: &Exp| {
476            write!(f, "{}", var)?;
477            if !exp.is_one() {
478                let exp = exp.to_string();
479                if exp.len() == 1 {
480                    write!(f, "^{}", exp)?;
481                } else {
482                    write!(f, "^{{{}}}", exp)?;
483                }
484            }
485            Ok(())
486        };
487        if let Some((var, exp)) = pairs.next() {
488            fmt_power(f, var, exp)?;
489        } else {
490            write!(f, "1")?;
491        }
492        for (var, exp) in pairs {
493            write!(f, " ")?;
494            fmt_power(f, var, exp)?;
495        }
496        Ok(())
497    }
498}
499
500impl<Var, Exp> MulAssign<(Var, Exp)> for Monomial<Var, Exp>
501where
502    Var: Ord,
503    Exp: Add<Output = Exp>,
504{
505    fn mul_assign(&mut self, rhs: (Var, Exp)) {
506        _add_assign(&mut self.0, rhs);
507    }
508}
509
510impl<Var, Exp> MulAssign for Monomial<Var, Exp>
511where
512    Var: Ord,
513    Exp: Add<Output = Exp>,
514{
515    fn mul_assign(&mut self, rhs: Self) {
516        for rhs in rhs.0 {
517            *self *= rhs;
518        }
519    }
520}
521
522impl<Var, Exp> Mul for Monomial<Var, Exp>
523where
524    Var: Ord,
525    Exp: Add<Output = Exp>,
526{
527    type Output = Self;
528
529    fn mul(mut self, rhs: Self) -> Self {
530        self *= rhs;
531        self
532    }
533}
534
535impl<Var, Exp> One for Monomial<Var, Exp>
536where
537    Var: Ord,
538    Exp: Add<Output = Exp>,
539{
540    fn one() -> Self {
541        Monomial(Default::default())
542    }
543
544    fn is_one(&self) -> bool {
545        self.0.is_empty()
546    }
547}
548
549impl<Var, Exp> Monoid for Monomial<Var, Exp>
550where
551    Var: Ord,
552    Exp: AdditiveMonoid,
553{
554}
555
556impl<Var, Exp> CommMonoid for Monomial<Var, Exp>
557where
558    Var: Ord,
559    Exp: AdditiveMonoid,
560{
561}
562
563impl<Var, Exp> Pow<Exp> for Monomial<Var, Exp>
564where
565    Var: Ord,
566    Exp: Clone + Default + Mul<Output = Exp>,
567{
568    type Output = Self;
569
570    fn pow(mut self, a: Exp) -> Self::Output {
571        for exp in self.0.values_mut() {
572            *exp = std::mem::take(exp) * a.clone();
573        }
574        self
575    }
576}
577
578#[cfg(test)]
579mod tests {
580    use super::*;
581
582    #[test]
583    fn combinations() {
584        let x = || Combination::generator('x');
585        let y = || Combination::generator('y');
586        assert_eq!(x().to_string(), "x");
587        assert_eq!((x() + y() + y() + x()).to_string(), "2 x + 2 y");
588
589        let combination = x() * 2u32 + y() * 3u32;
590        assert_eq!(combination.to_string(), "2 x + 3 y");
591        assert_eq!(combination.eval_with_order([5, 1]), 13);
592        let vars: Vec<_> = combination.variables().cloned().collect();
593        assert_eq!(vars, vec!['x', 'y']);
594
595        assert_eq!(Combination::<char, u32>::zero().to_string(), "0");
596
597        let x = Combination::generator('x');
598        assert_eq!((x.clone() * -1i32).to_string(), "(-1) x");
599        assert_eq!(x.neg().to_string(), "(-1) x");
600    }
601
602    #[test]
603    fn monomials() {
604        let x = || Monomial::<_, u32>::generator('x');
605        let y = || Monomial::<_, u32>::generator('y');
606        assert_eq!(x().to_string(), "x");
607        assert_eq!((x() * y() * y() * x()).to_string(), "x^2 y^2");
608
609        let monomial: Monomial<_, u32> = [('x', 1), ('y', 2)].into_iter().collect();
610        assert_eq!(monomial.to_string(), "x y^2");
611        assert_eq!(monomial.eval_with_order([10, 5]), 250);
612        let vars: Vec<_> = monomial.variables().cloned().collect();
613        assert_eq!(vars, vec!['x', 'y']);
614        assert_eq!(monomial.map_variables(|_| 'x').to_string(), "x^3");
615
616        assert_eq!(Monomial::<char, u32>::one().to_string(), "1");
617    }
618}