pub struct Polynomial<Var, Coef, Exp>(/* private fields */);
Expand description
A polynomial in several variables.
This data structure is for polynomials in normal form: a polynomial is a
formal linear combination of monomials in which no monomial is repeated, and no
variable is repeated within any monomial. The implementation is indeed a
Combination
of a Monomial
s. The use of a normal form means that
polynomial arithmetic automatically performs certain simplifications.
In abstract terms, polynomials with coefficients valued in a commutative ring R are the free commutative algebra over R.
Implementations§
Source§impl<Var, Coef, Exp> Polynomial<Var, Coef, Exp>
impl<Var, Coef, Exp> Polynomial<Var, Coef, Exp>
Sourcepub fn generator(var: Var) -> Self
pub fn generator(var: Var) -> Self
Constructs the generating polynomial corresponding to a variable.
Sourcepub fn from_monomial(m: Monomial<Var, Exp>) -> Selfwhere
Coef: One,
pub fn from_monomial(m: Monomial<Var, Exp>) -> Selfwhere
Coef: One,
Constructs the polynomial corresponding to a monomial.
Sourcepub fn monomials(&self) -> impl ExactSizeIterator<Item = &Monomial<Var, Exp>>
pub fn monomials(&self) -> impl ExactSizeIterator<Item = &Monomial<Var, Exp>>
Iterates over the monomials in the polynomial.
Sourcepub fn extend_scalars<NewCoef, F>(self, f: F) -> Polynomial<Var, NewCoef, Exp>where
F: FnMut(Coef) -> NewCoef,
pub fn extend_scalars<NewCoef, F>(self, f: F) -> Polynomial<Var, NewCoef, Exp>where
F: FnMut(Coef) -> NewCoef,
Maps the coefficients of the polynomial.
In the usual situations when the coefficients from commutative rigs and the mapping is a rig homomorphism, this operation is extension of scalars applied to free commutative algebras.
Sourcepub fn eval<A, F>(&self, f: F) -> A
pub fn eval<A, F>(&self, f: F) -> A
Evaluates the polynomial by substituting for the variables.
Sourcepub fn eval_pairs<A>(&self, pairs: impl IntoIterator<Item = (Var, A)>) -> A
pub fn eval_pairs<A>(&self, pairs: impl IntoIterator<Item = (Var, A)>) -> A
Evaluates the polynomial on a sequence of variable-value pairs.
This is a convenient way to evaluate the polynomial at a single point but it is not very efficient.
Sourcepub fn map_variables<NewVar, F>(&self, f: F) -> Polynomial<NewVar, Coef, Exp>
pub fn map_variables<NewVar, F>(&self, f: F) -> Polynomial<NewVar, Coef, Exp>
Maps over the variables in the polynomial.
The mapping need not be injective. This is conceptually equivalent to evaluating the polynomial with a map that sends generators to generators but avoids assuming that an arbitrary polynomial can be exponentiated, which is only makes sense when the exponents are nonnegative integers.
Trait Implementations§
Source§impl<Var, Coef, Exp> Add for Polynomial<Var, Coef, Exp>
impl<Var, Coef, Exp> Add for Polynomial<Var, Coef, Exp>
Source§impl<Var, Coef, Exp> AddAssign<(Coef, Monomial<Var, Exp>)> for Polynomial<Var, Coef, Exp>
impl<Var, Coef, Exp> AddAssign<(Coef, Monomial<Var, Exp>)> for Polynomial<Var, Coef, Exp>
Source§fn add_assign(&mut self, rhs: (Coef, Monomial<Var, Exp>))
fn add_assign(&mut self, rhs: (Coef, Monomial<Var, Exp>))
+=
operation. Read moreSource§impl<Var: Clone, Coef: Clone, Exp: Clone> Clone for Polynomial<Var, Coef, Exp>
impl<Var: Clone, Coef: Clone, Exp: Clone> Clone for Polynomial<Var, Coef, Exp>
Source§fn clone(&self) -> Polynomial<Var, Coef, Exp>
fn clone(&self) -> Polynomial<Var, Coef, Exp>
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moreSource§impl<Var, Coef, Exp> CommAlg for Polynomial<Var, Coef, Exp>
impl<Var, Coef, Exp> CommAlg for Polynomial<Var, Coef, Exp>
Source§impl<Var, Coef, Exp> Default for Polynomial<Var, Coef, Exp>
impl<Var, Coef, Exp> Default for Polynomial<Var, Coef, Exp>
Source§impl<Var, Coef, Exp> Display for Polynomial<Var, Coef, Exp>
impl<Var, Coef, Exp> Display for Polynomial<Var, Coef, Exp>
Source§impl<Var, Coef, Exp> FromIterator<(Coef, Monomial<Var, Exp>)> for Polynomial<Var, Coef, Exp>
impl<Var, Coef, Exp> FromIterator<(Coef, Monomial<Var, Exp>)> for Polynomial<Var, Coef, Exp>
Source§impl<Var, Coef, Exp> Module for Polynomial<Var, Coef, Exp>
impl<Var, Coef, Exp> Module for Polynomial<Var, Coef, Exp>
Source§impl<Var, Coef, Exp> Mul<Coef> for Polynomial<Var, Coef, Exp>
impl<Var, Coef, Exp> Mul<Coef> for Polynomial<Var, Coef, Exp>
Source§impl<Var, Coef, Exp> Mul for Polynomial<Var, Coef, Exp>
Multiply polynomials using the distributive law.
impl<Var, Coef, Exp> Mul for Polynomial<Var, Coef, Exp>
Multiply polynomials using the distributive law.
Source§impl<Var, Coef, Exp> Neg for Polynomial<Var, Coef, Exp>
impl<Var, Coef, Exp> Neg for Polynomial<Var, Coef, Exp>
Source§impl<Var, Coef, Exp> One for Polynomial<Var, Coef, Exp>
impl<Var, Coef, Exp> One for Polynomial<Var, Coef, Exp>
Source§impl<Var: PartialEq, Coef: PartialEq, Exp: PartialEq> PartialEq for Polynomial<Var, Coef, Exp>
impl<Var: PartialEq, Coef: PartialEq, Exp: PartialEq> PartialEq for Polynomial<Var, Coef, Exp>
Source§impl<Var, Coef, Exp> RigModule for Polynomial<Var, Coef, Exp>
impl<Var, Coef, Exp> RigModule for Polynomial<Var, Coef, Exp>
Source§impl<Var, Coef, Exp> Zero for Polynomial<Var, Coef, Exp>
impl<Var, Coef, Exp> Zero for Polynomial<Var, Coef, Exp>
impl<Var, Coef, Exp> AbGroup for Polynomial<Var, Coef, Exp>
impl<Var, Coef, Exp> AdditiveMonoid for Polynomial<Var, Coef, Exp>
impl<Var, Coef, Exp> CommMonoid for Polynomial<Var, Coef, Exp>
impl<Var, Coef, Exp> CommRig for Polynomial<Var, Coef, Exp>
impl<Var, Coef, Exp> CommRing for Polynomial<Var, Coef, Exp>
impl<Var: Eq, Coef: Eq, Exp: Eq> Eq for Polynomial<Var, Coef, Exp>
impl<Var, Coef, Exp> Monoid for Polynomial<Var, Coef, Exp>
impl<Var, Coef, Exp> Rig for Polynomial<Var, Coef, Exp>
impl<Var, Coef, Exp> Ring for Polynomial<Var, Coef, Exp>
impl<Var, Coef, Exp> StructuralPartialEq for Polynomial<Var, Coef, Exp>
Auto Trait Implementations§
impl<Var, Coef, Exp> Freeze for Polynomial<Var, Coef, Exp>
impl<Var, Coef, Exp> RefUnwindSafe for Polynomial<Var, Coef, Exp>
impl<Var, Coef, Exp> Send for Polynomial<Var, Coef, Exp>
impl<Var, Coef, Exp> Sync for Polynomial<Var, Coef, Exp>
impl<Var, Coef, Exp> Unpin for Polynomial<Var, Coef, Exp>
impl<Var, Coef, Exp> UnwindSafe for Polynomial<Var, Coef, Exp>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.