pub struct ThSymMonoidalCategory(/* private fields */);
Expand description
The theory of strict symmetric monoidal categories.
Implementations§
Trait Implementations§
Source§impl From<ThSymMonoidalCategory> for JsValue
impl From<ThSymMonoidalCategory> for JsValue
Source§fn from(value: ThSymMonoidalCategory) -> Self
fn from(value: ThSymMonoidalCategory) -> Self
Converts to this type from the input type.
Source§impl FromWasmAbi for ThSymMonoidalCategory
impl FromWasmAbi for ThSymMonoidalCategory
Source§impl IntoWasmAbi for ThSymMonoidalCategory
impl IntoWasmAbi for ThSymMonoidalCategory
Source§impl RefFromWasmAbi for ThSymMonoidalCategory
impl RefFromWasmAbi for ThSymMonoidalCategory
Source§type Anchor = RcRef<ThSymMonoidalCategory>
type Anchor = RcRef<ThSymMonoidalCategory>
The type that holds the reference to
Self
for the duration of the
invocation of the function that has an &Self
parameter. This is
required to ensure that the lifetimes don’t persist beyond one function
call, and so that they remain anonymous.Source§impl VectorFromWasmAbi for ThSymMonoidalCategory
impl VectorFromWasmAbi for ThSymMonoidalCategory
type Abi = <Box<[JsValue]> as FromWasmAbi>::Abi
unsafe fn vector_from_abi(js: Self::Abi) -> Box<[ThSymMonoidalCategory]>
Source§impl VectorIntoJsValue for ThSymMonoidalCategory
impl VectorIntoJsValue for ThSymMonoidalCategory
fn vector_into_jsvalue(vector: Box<[ThSymMonoidalCategory]>) -> JsValue
Source§impl VectorIntoWasmAbi for ThSymMonoidalCategory
impl VectorIntoWasmAbi for ThSymMonoidalCategory
type Abi = <Box<[JsValue]> as IntoWasmAbi>::Abi
fn vector_into_abi(vector: Box<[ThSymMonoidalCategory]>) -> Self::Abi
Source§impl WasmDescribeVector for ThSymMonoidalCategory
impl WasmDescribeVector for ThSymMonoidalCategory
impl SupportsConstructor for ThSymMonoidalCategory
impl SupportsInstanceProperty for ThSymMonoidalCategory
impl SupportsStaticProperty for ThSymMonoidalCategory
Auto Trait Implementations§
impl Freeze for ThSymMonoidalCategory
impl RefUnwindSafe for ThSymMonoidalCategory
impl !Send for ThSymMonoidalCategory
impl !Sync for ThSymMonoidalCategory
impl Unpin for ThSymMonoidalCategory
impl UnwindSafe for ThSymMonoidalCategory
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> ReturnWasmAbi for Twhere
T: IntoWasmAbi,
impl<T> ReturnWasmAbi for Twhere
T: IntoWasmAbi,
Source§type Abi = <T as IntoWasmAbi>::Abi
type Abi = <T as IntoWasmAbi>::Abi
Same as
IntoWasmAbi::Abi
Source§fn return_abi(self) -> <T as ReturnWasmAbi>::Abi
fn return_abi(self) -> <T as ReturnWasmAbi>::Abi
Same as
IntoWasmAbi::into_abi
, except that it may throw and never
return in the case of Err
.§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.