pub struct FinCategory<V, E, S = RandomState> { /* private fields */ }
Expand description
A finite category with explicitly defined composition law.
Such a category is not just finitely presented, but actually finite. The composition law is defined by a hash map on pairs of morphism generators. While very special, finite categories show up surprisingly often as schemas or theories. For example, the schemas for graphs, symmetric graphs, reflexive graphs, and symmetric reflexive graphs are all finite.
Implementations§
Source§impl<V, E, S> FinCategory<V, E, S>
impl<V, E, S> FinCategory<V, E, S>
Sourcepub fn generators(&self) -> &(impl FinGraph<V = V, E = E> + use<V, E, S>)
pub fn generators(&self) -> &(impl FinGraph<V = V, E = E> + use<V, E, S>)
Graph of generators of the finite category.
Sourcepub fn add_ob_generator(&mut self, v: V) -> bool
pub fn add_ob_generator(&mut self, v: V) -> bool
Adds an object generator, returning whether it is new.
Sourcepub fn add_ob_generators<T>(&mut self, iter: T)where
T: IntoIterator<Item = V>,
pub fn add_ob_generators<T>(&mut self, iter: T)where
T: IntoIterator<Item = V>,
Adds multiple object generators.
Sourcepub fn add_mor_generator(&mut self, e: E, dom: V, cod: V) -> bool
pub fn add_mor_generator(&mut self, e: E, dom: V, cod: V) -> bool
Adds a morphism generator, returning whether it is new.
Sourcepub fn set_composite(&mut self, d: E, e: E, f: FinMor<V, E>)
pub fn set_composite(&mut self, d: E, e: E, f: FinMor<V, E>)
Sets the value of a binary composite.
Sourcepub fn iter_invalid(&self) -> impl Iterator<Item = InvalidFinCategory<E>> + '_
pub fn iter_invalid(&self) -> impl Iterator<Item = InvalidFinCategory<E>> + '_
Iterates over failures to be a well-defined finite category.
Trait Implementations§
Source§impl<V, E, S> Category for FinCategory<V, E, S>
impl<V, E, S> Category for FinCategory<V, E, S>
Source§fn has_mor(&self, f: &FinMor<V, E>) -> bool
fn has_mor(&self, f: &FinMor<V, E>) -> bool
Does the category contain the value as a morphism?
Source§fn compose(&self, path: Path<V, FinMor<V, E>>) -> FinMor<V, E>
fn compose(&self, path: Path<V, FinMor<V, E>>) -> FinMor<V, E>
Composes a path of morphisms in the category.
Source§impl<V: Clone, E: Clone, S: Clone> Clone for FinCategory<V, E, S>
impl<V: Clone, E: Clone, S: Clone> Clone for FinCategory<V, E, S>
Source§fn clone(&self) -> FinCategory<V, E, S>
fn clone(&self) -> FinCategory<V, E, S>
Returns a copy of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source
. Read moreSource§impl<V, E, S> Default for FinCategory<V, E, S>where
S: Default,
impl<V, E, S> Default for FinCategory<V, E, S>where
S: Default,
Source§impl<V, E, S> FgCategory for FinCategory<V, E, S>
impl<V, E, S> FgCategory for FinCategory<V, E, S>
Source§fn ob_generators(&self) -> impl Iterator<Item = Self::ObGen>
fn ob_generators(&self) -> impl Iterator<Item = Self::ObGen>
Iterates over object generators.
Source§fn mor_generators(&self) -> impl Iterator<Item = Self::MorGen>
fn mor_generators(&self) -> impl Iterator<Item = Self::MorGen>
Iterates over morphism generators.
Source§fn mor_generator_dom(&self, f: &Self::MorGen) -> Self::Ob
fn mor_generator_dom(&self, f: &Self::MorGen) -> Self::Ob
The domain of a morphism generator
Source§fn mor_generator_cod(&self, f: &Self::MorGen) -> Self::Ob
fn mor_generator_cod(&self, f: &Self::MorGen) -> Self::Ob
The codomain of a morphism generator
Source§impl<V, E, S> PartialEq for FinCategory<V, E, S>
impl<V, E, S> PartialEq for FinCategory<V, E, S>
Source§impl<V, E, S> Validate for FinCategory<V, E, S>
impl<V, E, S> Validate for FinCategory<V, E, S>
Source§type ValidationError = InvalidFinCategory<E>
type ValidationError = InvalidFinCategory<E>
The type of a validation error. Read more
impl<V, E, S> Eq for FinCategory<V, E, S>
Auto Trait Implementations§
impl<V, E, S> Freeze for FinCategory<V, E, S>where
S: Freeze,
impl<V, E, S> RefUnwindSafe for FinCategory<V, E, S>
impl<V, E, S> Send for FinCategory<V, E, S>
impl<V, E, S> Sync for FinCategory<V, E, S>
impl<V, E, S> Unpin for FinCategory<V, E, S>
impl<V, E, S> UnwindSafe for FinCategory<V, E, S>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.