pub struct FpCategory<V, E, EqKey, S = RandomState> { /* private fields */ }
Expand description
A finitely presented category.
Such a presentation is defined by a finite graph together with a set of path equations. A morphism in the presented category is an equivalence class of paths in the graph, so strictly speaking we work with morphism representatives rather than morphism themselves.
Like the object and morphism generators, the equations are identified by keys. Depending on the application, these could be axiom names or meaningless IDs.
Implementations§
Source§impl<V, E, EqKey, S> FpCategory<V, E, EqKey, S>
impl<V, E, EqKey, S> FpCategory<V, E, EqKey, S>
Sourcepub fn generators(&self) -> &(impl FinGraph<V = V, E = E> + use<V, E, EqKey, S>)
pub fn generators(&self) -> &(impl FinGraph<V = V, E = E> + use<V, E, EqKey, S>)
Graph of generators of the finitely presented category.
Sourcepub fn get_equation(&self, key: &EqKey) -> Option<&PathEq<V, E>>
pub fn get_equation(&self, key: &EqKey) -> Option<&PathEq<V, E>>
Get a path equation by key.
Sourcepub fn equations(&self) -> impl Iterator<Item = &PathEq<V, E>>
pub fn equations(&self) -> impl Iterator<Item = &PathEq<V, E>>
Iterates over path equations in the presentation.
Sourcepub fn add_ob_generator(&mut self, v: V) -> bool
pub fn add_ob_generator(&mut self, v: V) -> bool
Adds an object generator, returning whether it is new.
Sourcepub fn add_ob_generators<Iter>(&mut self, iter: Iter)where
Iter: IntoIterator<Item = V>,
pub fn add_ob_generators<Iter>(&mut self, iter: Iter)where
Iter: IntoIterator<Item = V>,
Adds multiple object generators.
Sourcepub fn add_mor_generator(&mut self, e: E, dom: V, cod: V) -> bool
pub fn add_mor_generator(&mut self, e: E, dom: V, cod: V) -> bool
Adds a morphism generator, returning whether it is new.
Sourcepub fn make_mor_generator(&mut self, e: E) -> bool
pub fn make_mor_generator(&mut self, e: E) -> bool
Adds a morphism generator without initializing its (co)domain.
Sourcepub fn add_equation(&mut self, key: EqKey, eq: PathEq<V, E>)
pub fn add_equation(&mut self, key: EqKey, eq: PathEq<V, E>)
Adds a path equation to the presentation.
Sourcepub fn iter_invalid(
&self,
) -> impl Iterator<Item = InvalidFpCategory<E, EqKey>> + '_
pub fn iter_invalid( &self, ) -> impl Iterator<Item = InvalidFpCategory<E, EqKey>> + '_
Iterates over failures to be a well-defined presentation of a category.
Trait Implementations§
Source§impl<V, E, EqKey, S> Category for FpCategory<V, E, EqKey, S>
impl<V, E, EqKey, S> Category for FpCategory<V, E, EqKey, S>
Source§fn has_mor(&self, path: &Path<V, E>) -> bool
fn has_mor(&self, path: &Path<V, E>) -> bool
Source§fn compose(&self, path: Path<V, Path<V, E>>) -> Path<V, E>
fn compose(&self, path: Path<V, Path<V, E>>) -> Path<V, E>
Source§impl<V: Clone, E: Clone, EqKey: Clone, S: Clone> Clone for FpCategory<V, E, EqKey, S>
impl<V: Clone, E: Clone, EqKey: Clone, S: Clone> Clone for FpCategory<V, E, EqKey, S>
Source§fn clone(&self) -> FpCategory<V, E, EqKey, S>
fn clone(&self) -> FpCategory<V, E, EqKey, S>
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moreSource§impl<V, E, EqKey, S> Default for FpCategory<V, E, EqKey, S>where
S: Default,
impl<V, E, EqKey, S> Default for FpCategory<V, E, EqKey, S>where
S: Default,
Source§impl<V, E, EqKey, S> FgCategory for FpCategory<V, E, EqKey, S>
impl<V, E, EqKey, S> FgCategory for FpCategory<V, E, EqKey, S>
Source§fn ob_generators(&self) -> impl Iterator<Item = Self::ObGen>
fn ob_generators(&self) -> impl Iterator<Item = Self::ObGen>
Source§fn mor_generators(&self) -> impl Iterator<Item = Self::MorGen>
fn mor_generators(&self) -> impl Iterator<Item = Self::MorGen>
Source§fn mor_generator_dom(&self, f: &Self::MorGen) -> Self::Ob
fn mor_generator_dom(&self, f: &Self::MorGen) -> Self::Ob
Source§fn mor_generator_cod(&self, f: &Self::MorGen) -> Self::Ob
fn mor_generator_cod(&self, f: &Self::MorGen) -> Self::Ob
Source§impl<V, E, EqKey, S> PartialEq for FpCategory<V, E, EqKey, S>
impl<V, E, EqKey, S> PartialEq for FpCategory<V, E, EqKey, S>
Source§impl<V, E, EqKey, S> Validate for FpCategory<V, E, EqKey, S>
impl<V, E, EqKey, S> Validate for FpCategory<V, E, EqKey, S>
Source§type ValidationError = InvalidFpCategory<E, EqKey>
type ValidationError = InvalidFpCategory<E, EqKey>
impl<V, E, EqKey, S> Eq for FpCategory<V, E, EqKey, S>
Auto Trait Implementations§
impl<V, E, EqKey, S> Freeze for FpCategory<V, E, EqKey, S>where
S: Freeze,
impl<V, E, EqKey, S> RefUnwindSafe for FpCategory<V, E, EqKey, S>
impl<V, E, EqKey, S> Send for FpCategory<V, E, EqKey, S>
impl<V, E, EqKey, S> Sync for FpCategory<V, E, EqKey, S>
impl<V, E, EqKey, S> Unpin for FpCategory<V, E, EqKey, S>
impl<V, E, EqKey, S> UnwindSafe for FpCategory<V, E, EqKey, S>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.